Deep eutectic solvent assisted electrodeposition of NiCu alloy on the surface of stainless-steel mesh: Unveiling Its potential for water splitting reactions

Philominrajan Maria Viyanni ^a and Mathur Gopalakrishnan Sethuraman ^{a*} a, a* Department of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram, Tamil Nadu, India.

Fig.1 Schematic illustration of the preparation of Deep eutectic solvent

o OC

Experimental details

Introduction

- Today the global need for green and renewable energy sources as environmental impacts have changed \searrow widely with the steady decline of fossil fuels.
- The production of green fuel hydrogen through water splitting has emerged as a viable strategy for generating electrical energy from hydrogen.
- The O-O bond breaking and electron transfer involved in the half-reaction (OER) process result in slow reaction and high energy barrier, which has become the main bottleneck in the context of wide application.
- The main problem encountered today in water separation involves the insufficient kinetics of oxygen evolution reactions (OER), which requires a large amount of energy to overcome the electron-transfer barrier
- ***** To overcome this issue, several precious metal electrocatalysts have been utilized.
- Deep eutectic solvents are made from two or more solids that form a eutectic mixture through hydrogen bonding, which consists of two main parts, a Hydrogen Bond Donor (HBD) and a Hydrogen Bond Acceptor (HBA)
- Compared with the aqueous electrolysis process, the DES-based electrodeposition process avoids the generation of hydrogen and other by-products
- Nickel is widely applied as an electrode material for the WSR. Nickel combined with coper improves the chemical, mechanical, electrochemical, and structural stability

Material Characterisation

Results

Fig.2 SEM images of a) Bare SS b-d) NiCu@SS with different magnifications e) EDX spectrum of NiCu@SS

Fig.5. a and b are the LSV profile of NiCu@SS, a' and b' are the Tafel slope, c) Impedance spectrum of NiCu@SS in 1 M KOH, d) Chronoamperometry Stability test, e) LSV profile of NiCu@SS first cycle and 3000th Cycle, f) ECSA of NiCu@SS and g) Over all cell voltage of water splitting reaction

Conclusions

- * NiCu@SS was successfully synthesized by electrodeposition method using deep eutectic Solvents as electrolyte
- * The deposition takes place uniformly and thickness of the coating was found to be 15 μm .
- Various techniques like XRD, EDX, and SEM are used to characterize the prepared catalysts
- * The study revealed that the catalytic activity of NiCu@SS as a superior electrocatalyst in the water-splitting reaction

Fig.3 XPS spectra of a)Ni 2p, b) Cu 2p, c) O 1s

Fig.4. a) XRD spectra of NiCu@SS with various deposition times. b) Calculating the thickness of the coating.

- * NiCu@SS electrode shows excellent catalytic ability towards watersplitting with a cell voltage of 1.35 V
- * The stability of NiCu@SS was tested by chronoamperometry technique up to 48h and 3000 cycle stability test

References

 Edison, Thomas Nesakumar Jebakumar Immanuel, et al. " *Fuel* 297 (2021): 120786.
Maria Viyanni, Philominrajan, Thomas Nesakumar Jebakumar Immanuel Edison, and Mathur Gopalakrishnan Sethuraman. Materials Today Sustainability 24 (2023): 100565.

International Conference on

Composite Materials for Environment Protection & Remediation (ICCMEPR - 2024) 02-03 July, 2023

