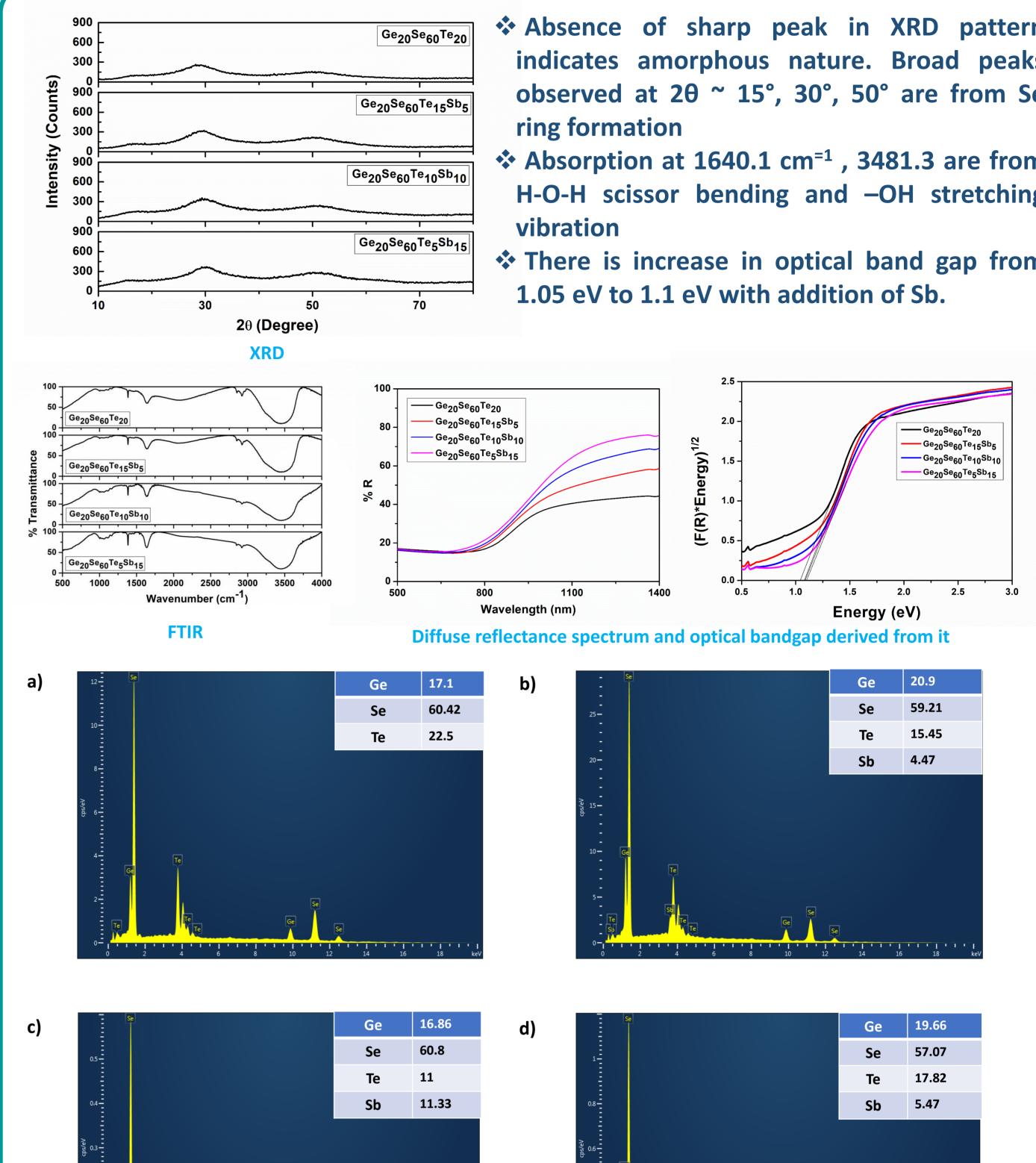
COCHIN UNIVERSITY O SCIENCE AND TECHNOLOG


Effect of Sb addition on physical and optical properties of ternary Ge-Se-Te glasses Anila Thomas^{1,*}, Sheenu Thomas¹

¹International School of Photonics, Cochin University of Science And Technology, Kochi- 682022, India

Abstract

- Our work investigates the changes in physical and optical properties of the GeSeTe glass matrix when Te is substituted with Sb.
- The bulk chalcogenide glass is prepared by the conventional melt quench method. X-ray diffraction is employed to determine the amorphous nature of bulk samples. The ratio of compositional elements is verified using energy-dispersive X-ray spectroscopy.
- Diffuse reflectance spectroscopy is employed to assess the optical bandgap arising from indirect electronic transitions. Its value changes

- Results
 - Absence of sharp peak in XRD pattern indicates amorphous nature. Broad peaks observed at 20 ~ 15°, 30°, 50° are from Se
 - Absorption at 1640.1 cm⁻¹, 3481.3 are from H-O-H scissor bending and –OH stretching
 - ***** There is increase in optical band gap from

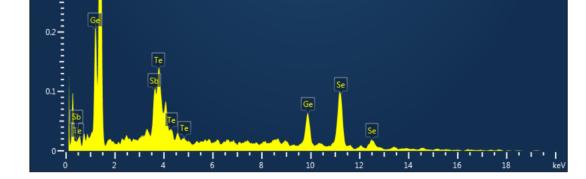
- with the incorporation of Sb as the fourth element.
- Differential scanning calorimetry studies shows that the addition of Sb leads to a higher transition temperature.
- ✤ IR transparency of these glasses is observable in the FT-IR spectrum except for some impurity absorption.

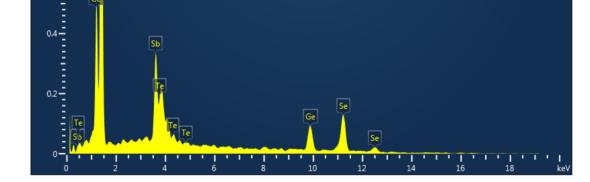
Introduction

- Chalcogenide glasses (ChGs) finds applications, as phase-change memories, solar cells, sensors, and photonics.
- Consist of one or more chalcogen elements (S,Se,Te) and are highly transparent in IR regime.
- They are covalently bonded to network modifiers like Ge,As,Sb.Sn etc. • and properties are tuneable.
- GeSeTeSb glass family is expected to have the properties of GeSeTe, GeSbTe and GeSeSb glass families.
- Disadvantages of the ternary glass families like low sensitivity, tendency * to crystallization, thermal stability are expected to improve with the addition of Sb.
- GSST chalcogenide glasses have already found application as phase ** change memory material. The other properties and applications are needed to be explored.

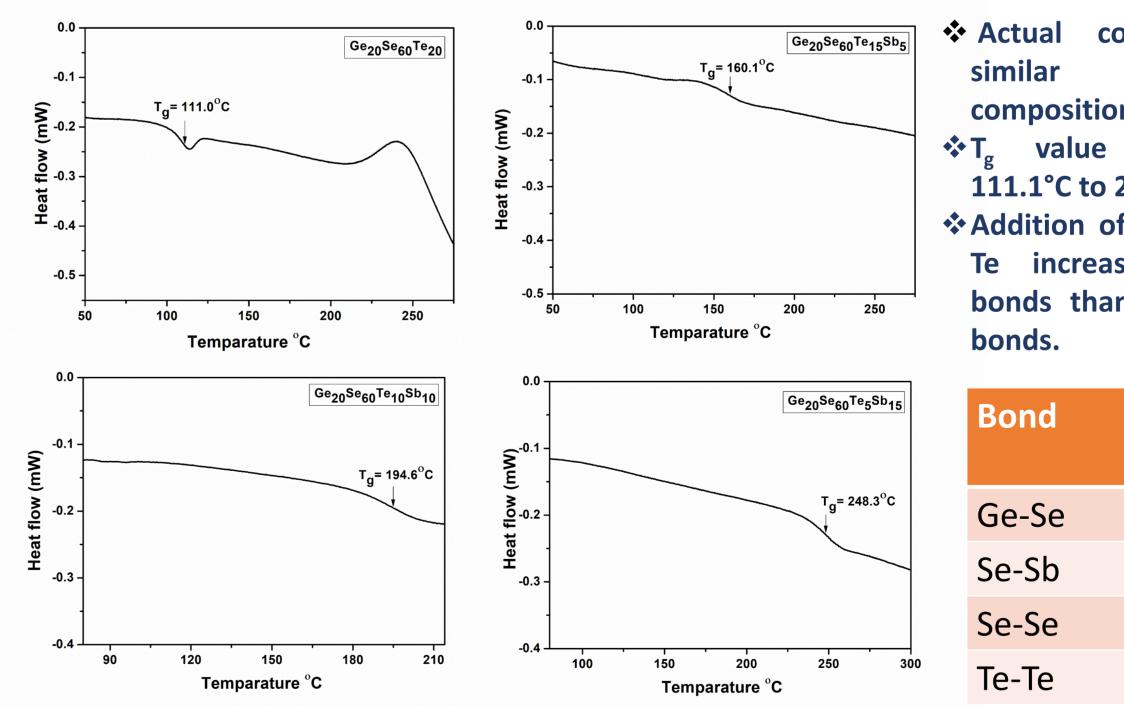
Experiment

- ✤ Pure Ge, Se, Te and Sb (5N purity) of appropriate weight percentage are loaded into quartz ampoules and sealed under vacuum (10⁻³ mbar).
- It is then heated using a rocking and rotating furnace at 1050°C for 48 hours and quenched in ice-cooled water.
- Then etched in hydrofluoric acid and the samples are taken out. *
- Ground to fine powder and various characterizations are done *




The average co-ordination number is given by

 $\langle \mathbf{r} \rangle = \frac{aN_{Ge} + bN_{Se} + cN_{Te} + dN_{Sb}}{\mathbf{a} + \mathbf{b} + \mathbf{c} + \mathbf{d}}$


Where a, b, c, d are the percentage composition and N_{Ge}, N_{Se}, N_{Te}, N_{Sb} are the co-ordination of corresponding element. Compositions with 2.2 < <r> < 2.7 makes good and rigid glasses

· · · · · · · · · · · · · · · · · · ·	
Composition	<r></r>
Ge ₂₀ Se ₆₀ Te ₂₀	2.4
Ge ₂₀ Se ₆₀ Te ₁₅ Sb ₅	2.45
$Ge_{20}Se_{60}Te_{10}Sb_{10}$	2.5
Ge ₂₀ Se ₆₀ Te ₅ Sb ₁₅	2.55

EDAX spectrum of each composition and their corresponding weight percentage in table

compositions were nominal to compositions *****T_a value increases from 111.1°C to 248.3°C **Addition** of Sb at expense of Te increases Se-Sb, Sb-Sb bonds than Se-Se and Te-Te

Bond energy (kcal/mol) 49.44 43.98 44.04 33

Differential scanning calorimetry thermogram of the different compositions

Conclusions

- Ge₂₀Se₆₀Te_{20-x}Sb_x (x= 0, 5, 10, 15) glasses were synthesized by melt quench method
- **X**-ray diffraction pattern confirms the amorphous nature and FTIR spectrum shows these glasses are IR transparent. Presence of water impurity was observed

*****Increase in optical band gap is observed from diffuse reflectance spectrum. T_g also increases considerably with the addition of Sb. This is because higher co-ordination of Sb increases number of bonds.

References

1) Kaistha, A; Rangra, V.S; Pankaj, S. Glass Phys. Chem. 2015, 41, 175-179. 2) Kukreti, Atul, K., Saxena, M; Rastogi, N. Int. J. Adv. Eng. Res. Stud. 2016, 3, 236875 3) Hassanien, A.S.; Sharma, I.; Akl, A.A. J. Non-Cryst. Solids. 2020, 531, 119853. 4) Sharma, Neha et.al. J. Non-Cryst. Solids. 2013, 375, 114-118.

International Conference on **Composite Materials for Environment Protection & Remediation**

(ICCMEPR - 2024) 02-03 July, 2023