Alcohol assisted synthesis and photothermal studies of ZnO nanostructures

Ramya M¹, Najma P P², Kashmeera K B² ,V P N Nampoori¹ , Kailasnath M¹

¹ International School of Photonics, CUSAT, Kochi. ² Ansar Women's College, Perumpilavu, Thrissur.

Abstract

In this paper, we experimentally investigated the thermal diffusivity of ZnO nanostructures synthesized by solution method using methanol, 1butanol, 1-hexanol, and 1-decanol as solvents. The dual beam thermal lens technique was utilized for measuring thermal diffusivity. The results reveal the morphology-dependent thermal properties of ZnO Thermal diffusivity variations nanoparticles. dependence the ZnO emission mechanism.

Introduction

is a wonderful Zinc oxide (ZnO) II-VI semiconducting material with a wide range of unique properties and it is used in numerous multidisciplinary fields. In this paper, we discuss the ZnO synthesis of stable water-based nanostructures and its thermal diffusivitv measurement using thermal lens technique

Synthesis of nanostructures

Conclusions

In summary, the present work explored the shapedependent thermal properties of ZnO nanocolloids. It was observed that ZnO nanorod-based nanocolloids showed higher thermal diffusivity value than nanodot structures. The emission mechanism played a critical role in thermal diffusivity. ZnO lattice defect state emission increases in turn decrease the thermal diffusivity of nanostructures.

References

- 1. M. Ramya, T. K. Nideep, V. P. N. Nampoori, and M. Kailasnath, Sci. Rep., 2021, 11, 1-14.
- 2. M. Ramya, T. K. Nideep, V. P. N. Nampoori, and M. Kailasnath, New J. Chem., 2019, 43,17980-17990.
- 3. M. K. M Ramya, T K. Nideep, V P N Nampoori, Appl. Phys. B, 2019, 125, 1-9.

Experimental Set up

Results

Figure 2: TEM image of synthesized ZnO nanostructures

Figure 4: Emission spectra of ZnO nanostructures

International Conference on

Composite Materials for Environment Protection & Remediation RESEARCH PLATEAU (ICCMEPR - 2024) 02-03 July, 2023

