Synthesis of Tin Ferrite Nanoparticles and their Electrochemical Performance

Dr. Raminder Kaur¹ and Amanpreet Kaur¹,

¹Punjabi University, Patiala

Abstract

Tin ferrite (SnFe2O4) nanoparticles have received great attention because of their unique functional properties, including an appealing electrical band excellent chemical structure, stability, high magnetization excellent biocompatibility. and SnFe₂O₄ nanoparticles have diverse applications including environmental remediation, lithium-ion batteries, supercapacitors and hydrogen peroxide sensors. SnFe₂O₄ nanoparticles were synthesized using sol-gel method. X-ray diffraction (XRD) analysis was performed to examine the structural properties of synthesized nanoparticles. SnFe2O4 nanoparticles are excellent material for electrochemical applications.

Introduction

- □ The term ferrite is commonly used to describe a class of magnetic oxide compounds that contain iron oxide as a principal component[1].
- □ Tin ferrite $(SnFe_2O_4)$ is spinel oxide [2] and spinel oxides (ferrospinels or ferrites) are of considerable interest due to their diverse applications in optical, electronic, catalytic and magnetic materials [3].
- □ In the last few years, tin ferrite is gaining a lot of importance due to its non-toxicity, low cost, and environment friendliness[4].
- □ Tin ferrite is superparamagnetic material with very high magnetization and corecivity [5].

Experimental Setup

Cyclic Voltammogram

Conclusions

- □ The XRD micrograph shows the phase formation of tin ferrite nanoparticles at 35.55°. However, there are some extra peaks in the micrograph. The peak at 33.4° represents the presence of a hematite phase due to the oxidation of nanoparticles.
- □ Fig 2. represents the cyclic voltammograms of tin ferrite nanoparticles with different scan rates. Both figures show that a scan rate of 100 mV/s gives the highest capacity for the tin ferrite nanoparticles.
- □Among the different electrolytes tested, 0.5 M NaOH provides the best results.

References

- K. K. Kefeni, B. B. Mamba, and T. A. Msagati, *Sep. Purif. Technol.* 188, (2017)
 O. Mounkachi, M. Hamedoun and A. Benyoussef, *J. Supercond. Nov. Magn.* 30, (2017)
 N. Kumari, S. Kour, G. Singh and R. K. Sharma, *AIP. Conf. Proc.* 2220, 020164 (2020)
 H. Zhang, W.W. Wang, H. Li, S. Meng and D. Li, *Mater. Lett.* 62, 1230 (2008)
- 5.D. Predoi, V. Kuneser and G. Filoti, Romanian Rep. Phys. 56, 373 (2004)

6.Y. Jia, D. Kim, T. Lee, S. Kang, B. W. Lee, S. J. Rheea and C Liu, *RSC. Adv.* 6, 76542 (2016)
 7.A. B. Salunkhe, V.M. Khot, M.R.Phadatare and S. H. Pawar, *J. Alloys Compd.* 514, 91 (2012)

International Conference on Composite Materials for Environment Protection & Remedia (ICCMEPR - 2024) 02-03 July, 2024